Publications directly related to the IOLA materials
Refereed Journal Articles and Book Chapters
Andrews-Larson, C. J., Mauntel, M., Plaxco, D., Watford, J. M., Smith, J., & Kim, M. (2021). Introducing closure under linear combinations: The one-way hallways task sequence.
Bulletin of the International Linear Algebra Society, 67, 3–6.
https://ilasic.org/wp-content/uploads/IMAGE/image67.pdf
Andrews-Larson, C., McCrackin, S., & Kasper, V. (2019). The next time around: scaffolding and shifts in argumentation in initial and subsequent implementations of inquiry-oriented instructional materials.
The Journal of Mathematical Behavior, 56, 100719.
https://doi.org/10.1016/j.jmathb.2019.100719
Andrews-Larson, C., Wawro, M., & Zandieh, M. (2017). A hypothetical learning trajectory for conceptualizing matrices as linear transformations.
International Journal of Mathematical Education in Science and Technology, 48(6), 809–829.
https://doi.org/10.1080/0020739X.2016.1276225
Bagley, S., Rasmussen, C., & Zandieh, M. (2015). Inverse, composition, and identity: The case of function and linear transformation.
The Journal of Mathematical Behavior, 37, 36–47.
https://doi.org/10.1016/j.jmathb.2014.11.003
Bouhjar, K., Andrews-Larson, C., & Haider, M. Q. (2021). An analytical comparison of students’ reasoning in the context of Inquiry-Oriented Instruction: The case of span and linear independence.
The Journal of Mathematical Behavior,
64, 100908.
https://doi.org/10.1016/j.jmathb.2021.100908
Bouhjar, K., Andrews-Larson, C., Haider, M., & Zandieh, M. (2018). Examining students’ procedural and conceptual understanding of eigenvectors and eigenvalues in the context of inquiry-oriented instruction. In S. Stewart, C. Andrews-Larson, A. Berman, & M. Zandieh (Eds.),
Challenges and strategies in teaching linear algebra (pp. 193–216). Springer.
https://doi.org/10.1007/978-3-319-66811-6_9
Haider, M. Q., & Andrews-Larson, C. (2022). Examining learning outcomes of inquiry oriented instruction in introductory linear algebra classes.
International Journal of Education in Mathematics, Science, and Technology, 10(2), 341–359.
https://doi.org/10.46328/ijemst.2096
Hauk, S., Rasmussen, C., Infante, N.E., Lockwood, E., Zandieh, M., Brown, S., Lai, Y., Hsu, P. (2018). Research in collegiate mathematics education. In Deines, A., Ferrero, D., Graham, E., In M., Manore, C., & Price, C. (Eds.),
AWMRS 2017: Advances in the mathematical sciences (pp. 245-268). Association for Women in Mathematics Series, vol 15. Springer.
https://doi.org/10.1007/978-3-319-98684-5_14
Plaxco, D., Zandieh, M., & Wawro, M. (2018). Stretch directions and stretch factors: A sequence intended to support guided reinvention of eigenvector and eigenvalue. In S. Stewart, C. Andrews-Larson, A. Berman, & M. Zandieh (Eds.),
Challenges in Teaching Linear Algebra (pp. 175–192), ICME-13 Monographs. Springer.
https://doi.org/10.1007/978-3-319-66811-6_8
Rasmussen, C., Wawro, M. & Zandieh, M. (2015). Examining individual and collective level mathematical progress.
Educational Studies in Mathematics, 88(2), 259–281.
https://doi.org/10.1007/s10649-014-9583-x
Smith, J., Lee, I., Zandieh, M., & Andrews-Larson, C. (2022). A progression of student symbolizing: Solutions to systems of linear equations
Avances De Investigación En Educación Matemática, (21), 45–64.
https://doi.org/10.35763/aiem21.4237
Wawro, M., Andrews-Larson, C., Zandieh, M., & Plaxco, D. (2022). Inquiry-Oriented Linear Algebra: Connecting design-based research and instructional change theory in curriculum design. In R. Biehler, M. Liebendörfer, G. Gueudet, C. Rasmussen, & C. Winsløw (Eds.),
Practice-Oriented Research in Tertiary Mathematics Education: New Directions (pp. 329–348), Springer.
https://doi.org/10.1007/978-3-031-14175-1_16
Wawro, M., Rasmussen, C., Zandieh, M., & Larson, C. (2013). Design research within undergraduate mathematics education: An example from introductory linear algebra. In T. Plomp, & N. Nieveen (Eds.), Educational design research – Part B: Illustrative cases (pp. 905–925). SLO.
Wawro, M., Rasmussen, C., Zandieh, M., Sweeney, G. F., & Larson, C. (2012). An inquiry-oriented approach to span and linear independence: The case of the magic carpet ride sequence.
PRIMUS,
22(8), 577–599.
https://doi.org/10.1080/10511970.2012.667516
Refereed Conference Proceedings Papers
Andrews-Larson, C., Mauntel, M., Plaxco, D., Watford, M., Smith, J., Kim, M. (2022). Contextual and mathematical conceptual resources for reasoning about null spaces. In S. S. Karunakaran & A. Higgins (Eds.),
Proceedings of the 24th Annual Conference on Research in Undergraduate Mathematics Education (pp. 28–35). SIGMAA on RUME. Retrieved from
http://sigmaa.maa.org/rume/RUME24.pdf
Florensa, I., Hoffman, M., Romo Vázquez, A., Zandieh, M., & Martínez-Planell, R. (2022). Innovations in university teaching based on mathematics education research. In Trigueros, M., Barquero, B., Hochmuth, R., & J. Peters (Eds.),
Proceedings of INDRUM 2022 Fourth Conference of the International Network for Didactic Research in University Mathematics (pp. 24–43). University of Hannover and INDRUM.
https://hal.science/hal-04026924v1
Headrick, L. & Zandieh, M. (2024). Linear algebra students’ reasoning with compositions of linear transformations. In S. Cook, B. Katz, & D. Moore-Russo (Eds.),
Proceedings of the 26th Annual Conference on Research in Undergraduate Mathematics Education (pp. 1229–1235). SIGMAA on RUME. Retrieved from
http://sigmaa.maa.org/rume/RUME26_Proceedings2024-letter.pdf
Henderson, F., Rasmussen, C., Sweeney, G., Wawro, M, & Zandieh, M. (2010). Symbol sense in linear algebra: A start toward eigen theory.
Proceedings of the 13th Annual Conference on Research in Undergraduate Mathematics Education. SIGMAA on RUME. Retrieved from
http://sigmaa.maa.org/rume/crume2010
Kim, M., & McCrackin, S. (2023). How do postsecondary linear algebra instructors implementing Inquiry-Oriented approaches address goals of instruction in an Online Work Group? In S. Cook, B. Katz, and D. Moore-Russo (Eds.),
Proceedings of the 25th Annual Conference on Research in Undergraduate Mathematics Education (p. 1192–1198). SIGMAA on RUME. Retrieved from
http://sigmaa.maa.org/rume/RUME25_Proceedings.pdf
Lee., I., Bettersworth, Z., Zandieh, M., Wawro, M., & Quinlan, I. (2022). Student thinking in an inquiry-oriented approach to teaching least squares. In S. S. Karunakaran & A. Higgins (Eds.),
Proceedings of the 24th Annual Conference on Research in Undergraduate Mathematics Education (pp. 349–356). SIGMAA on RUME. Retrieved from
http://sigmaa.maa.org/rume/RUME24.pdf
Plaxco, D., Andrews-Larson, C., Smith, J., Kim, M., Mauntel, M., & Watford, M. (2021). Introducing an RME-based task sequence to support the guided reinvention of vector spaces. In S. S. Karunakaran & A. Higgins (Eds.),
2021 Research in Undergraduate Mathematics Education Reports (pp. 222–228). SIGMAA on RUME. Retrieved from
http://sigmaa.maa.org/rume/2021_RUME_Reports.pdf
Plaxco, D., Le, L., Wawro, M., & Mauntel, M. (2025). Students’ generalizing activity while using determinant applets. In S. Cook, B.P. Katz, & K. Melhuish (Eds.),
Proceedings of the 27th Annual Conference on Research in Undergraduate Mathematics Education (pp. 634–643). SIGMAA on RUME. Retrieved from
http://sigmaa.maa.org/rume/RUME27_Proceedings.pdf
Smith, J. (2023). Participatory equity in one undergraduate linear algebra class. In S. Cook, B. Katz, and D. Moore-Russo (Eds.),
Proceedings of the 25th Annual Conference on Research in Undergraduate Mathematics Education (p. 726–735). SIGMAA on RUME. Retrieved from
http://sigmaa.maa.org/rume/RUME25_Proceedings.pdf
Smith, J., Mauntel, M., & Bettersworth, Z. (2025). Building hallways to collaborative reasoning in an Inquiry-Oriented Linear Algebra activity. In S. Cook, B.P. Katz, & K. Melhuish (Eds.),
Proceedings of the 27th Annual Conference on Research in Undergraduate Mathematics Education (pp. 1220–1225). SIGMAA on RUME. Retrieved from
http://sigmaa.maa.org/rume/RUME27_Proceedings.pdf
Wawro, M. (2009). Task design: Towards promoting a geometric conceptualization of linear transformation and change of basis.
Proceedings of the 12th Annual Conference on Research in Undergraduate Mathematics Education. (pp. 222–228). SIGMAA on RUME. Retrieved from
http://sigmaa.maa.org/rume/crume2009/proceedings.html
Wawro, M., Mauntel, M., & Plaxco, D. (2023). “The shape will have no volume”: Relationships students observed about determinants in a dynamic geometric applet. In S. Cook, B. Katz, and D. Moore-Russo (Eds.),
Proceedings of the 25th Annual Conference on Research in Undergraduate Mathematics Education (pp. 403–411). SIGMAA on RUME. Retrieved from
http://sigmaa.maa.org/rume/RUME25_Proceedings.pdf
Wawro, M., Park, M., Zandieh, M., Bettersworth, Z., & Lee, I. (2023). Student reasoning about the least-squares problem in inquiry-oriented linear algebra. In S. Cook, B. Katz, and D. Moore-Russo (Eds.),
Proceedings of the 25th Annual Conference on Research in Undergraduate Mathematics Education (pp. 643–651). SIGMAA on RUME. Retrieved from
http://sigmaa.maa.org/rume/RUME25_Proceedings.pdf
Wawro, M., Zandieh, M., & Bettersworth, Z. (in press). An inquiry-oriented approach to least squares in linear algebra. Paper presented at the Congress on European Research in Mathematics Education (CERME), Bolzano, Italy. Proceedings of the Fourteenth Congress of European Research Society in Mathematics Education (CERME14). Free University of Bozen-Bolzano and ERME.
Zandieh, M., Plaxco, D., Wawro, M., Rasmussen, C., Milbourne, H., & Czeranko, K. (2015). Extending multiple choice format to document student thinking. In T. Fukawa-Connelly, N. Infante, K. Keene, & M. Zandieh (Eds.),
Proceedings of the 18th Annual Conference on Research in Undergraduate Mathematics Education (pp. 1079–1085). SIGMAA on RUME. Retrieved from
http://sigmaa.maa.org/rume/RUME18v2.pdf