Publications

Publications directly related to the IOLA materials


Refereed Journal Articles and Book Chapters

Andrews-Larson, C. J., Mauntel, M., Plaxco, D., Watford, J. M., Smith, J., & Kim, M. (2021). Introducing closure under linear combinations: The one-way hallways task sequence. Bulletin of the International Linear Algebra Society, 67, 3–6. https://ilasic.org/wp-content/uploads/IMAGE/image67.pdf

Andrews-Larson, C., McCrackin, S., & Kasper, V. (2019). The next time around: scaffolding and shifts in argumentation in initial and subsequent implementations of inquiry-oriented instructional materials. The Journal of Mathematical Behavior, 56, 100719. https://doi.org/10.1016/j.jmathb.2019.100719

Andrews-Larson, C., Wawro, M., & Zandieh, M. (2017). A hypothetical learning trajectory for conceptualizing matrices as linear transformations. International Journal of Mathematical Education in Science and Technology, 48(6), 809–829. https://doi.org/10.1080/0020739X.2016.1276225

Bagley, S., Rasmussen, C., & Zandieh, M. (2015). Inverse, composition, and identity: The case of function and linear transformation. The Journal of Mathematical Behavior, 37, 36–47. https://doi.org/10.1016/j.jmathb.2014.11.003

Bernier, J. G, & Zandieh, M. (2024). Comparing student strategies in a game-based and pen-and-paper task for linear algebra. The Journal of Mathematical Behavior, 73, 101105. https://doi.org/10.1016/j.jmathb.2023.101105

Bouhjar, K., Andrews-Larson, C., & Haider, M. Q. (2021). An analytical comparison of students’ reasoning in the context of Inquiry-Oriented Instruction: The case of span and linear independence. The Journal of Mathematical Behavior, 64, 100908. https://doi.org/10.1016/j.jmathb.2021.100908

Bouhjar, K., Andrews-Larson, C., Haider, M., & Zandieh, M. (2018). Examining students’ procedural and conceptual understanding of eigenvectors and eigenvalues in the context of inquiry-oriented instruction. In S. Stewart, C. Andrews-Larson, A. Berman, & M. Zandieh (Eds.), Challenges and strategies in teaching linear algebra (pp. 193–216). Springer. https://doi.org/10.1007/978-3-319-66811-6_9

Haider, M. Q., & Andrews-Larson, C. (2022). Examining learning outcomes of inquiry oriented instruction in introductory linear algebra classes. International Journal of Education in Mathematics, Science, and Technology, 10(2), 341–359. https://doi.org/10.46328/ijemst.2096

Hauk, S., Rasmussen, C., Infante, N.E., Lockwood, E., Zandieh, M., Brown, S., Lai, Y., Hsu, P. (2018). Research in collegiate mathematics education. In Deines, A., Ferrero, D., Graham, E., In M., Manore, C., & Price, C. (Eds.), AWMRS 2017: Advances in the mathematical sciences (pp. 245-268). Association for Women in Mathematics Series, vol 15. Springer. https://doi.org/10.1007/978-3-319-98684-5_14

Larson, C., & Zandieh, M. (2013). Three interpretations of the matrix equation Ax=b. For the Learning of Mathematics, 33(2), 11–17. https://www.jstor.org/stable/43894844

Mauntel, M., Wawro, M., & Plaxco, D. (2024). An inquiry-oriented approach to determinants. PRIMUS, 1–20. https://doi.org/10.1080/10511970.2024.2315134

Plaxco, D., & Wawro, M. (2015). Analyzing student understanding in linear algebra through mathematical activity. The Journal of Mathematical Behavior, 38, 87–100. https://doi.org/10.1016/j.jmathb.2015.03.002

Plaxco, D., Zandieh, M., & Wawro, M. (2018). Stretch directions and stretch factors: A sequence intended to support guided reinvention of eigenvector and eigenvalue. In S. Stewart, C. Andrews-Larson, A. Berman, & M. Zandieh (Eds.), Challenges in Teaching Linear Algebra (pp. 175–192), ICME-13 Monographs. Springer. https://doi.org/10.1007/978-3-319-66811-6_8

Rasmussen, C., Wawro, M. & Zandieh, M. (2015). Examining individual and collective level mathematical progress. Educational Studies in Mathematics, 88(2), 259–281. https://doi.org/10.1007/s10649-014-9583-x

Smith, J., Lee, I., Zandieh, M., & Andrews-Larson, C. (2022). A progression of student symbolizing: Solutions to systems of linear equations Avances De Investigación En Educación Matemática, (21), 45–64. https://doi.org/10.35763/aiem21.4237

Wawro, M. (2014). Student reasoning about the invertible matrix theorem in linear algebra. ZDM Mathematics Education, 46(3), 389–406. https://doi.org/10.1007/s11858-014-0579-x

Wawro, M., Andrews-Larson, C., Zandieh, M., & Plaxco, D. (2022). Inquiry-Oriented Linear Algebra: Connecting design-based research and instructional change theory in curriculum design. In R. Biehler, M. Liebendörfer, G. Gueudet, C. Rasmussen, & C. Winsløw (Eds.), Practice-Oriented Research in Tertiary Mathematics Education: New Directions (pp. 329–348), Springer. https://doi.org/10.1007/978-3-031-14175-1_16

Wawro, M., Rasmussen, C., Zandieh, M., & Larson, C. (2013). Design research within undergraduate mathematics education: An example from introductory linear algebra. In T. Plomp, & N. Nieveen (Eds.), Educational design research – Part B: Illustrative cases (pp. 905–925). SLO.

Wawro, M., Rasmussen, C., Zandieh, M., Sweeney, G. F., & Larson, C. (2012). An inquiry-oriented approach to span and linear independence: The case of the magic carpet ride sequence. PRIMUS, 22(8), 577–599. https://doi.org/10.1080/10511970.2012.667516

Zandieh, M., & Andrews-Larson, C. (2019). Symbolizing while solving linear systems. ZDM Mathematics Education, 51(7), 1183–1197. https://doi.org/10.1007/s11858-019-01083-3

Zandieh, M., Wawro, M., & Rasmussen, C. (2017). An example of inquiry in linear algebra: The roles of symbolizing and brokering. PRIMUS, 27(1), 96–124. https://doi.org/10.1080/10511970.2016.11996183

Refereed Conference Proceedings Papers

Andrews-Larson, C., Mauntel, M., Plaxco, D., Watford, M., Smith, J., Kim, M. (2022). Contextual and mathematical conceptual resources for reasoning about null spaces. In S. S. Karunakaran & A. Higgins (Eds.), Proceedings of the 24th Annual Conference on Research in Undergraduate Mathematics Education (pp. 28–35). SIGMAA on RUME. Retrieved from http://sigmaa.maa.org/rume/RUME24.pdf

Florensa, I., Hoffman, M., Romo Vázquez, A., Zandieh, M., & Martínez-Planell, R. (2022). Innovations in university teaching based on mathematics education research. In Trigueros, M., Barquero, B., Hochmuth, R., & J. Peters (Eds.), Proceedings of INDRUM 2022 Fourth Conference of the International Network for Didactic Research in University Mathematics (pp. 24–43). University of Hannover and INDRUM. https://hal.science/hal-04026924v1

Headrick, L. & Zandieh, M. (2024). Linear algebra students’ reasoning with compositions of linear transformations. In S. Cook, B. Katz, & D. Moore-Russo (Eds.), Proceedings of the 26th Annual Conference on Research in Undergraduate Mathematics Education (pp. 1229–1235). SIGMAA on RUME. Retrieved from http://sigmaa.maa.org/rume/RUME26_Proceedings2024-letter.pdf

Henderson, F., Rasmussen, C., Sweeney, G., Wawro, M, & Zandieh, M. (2010). Symbol sense in linear algebra: A start toward eigen theory. Proceedings of the 13th Annual Conference on Research in Undergraduate Mathematics Education. SIGMAA on RUME. Retrieved from http://sigmaa.maa.org/rume/crume2010

Kim, M., & McCrackin, S. (2023). How do postsecondary linear algebra instructors implementing Inquiry-Oriented approaches address goals of instruction in an Online Work Group? In S. Cook, B. Katz, and D. Moore-Russo (Eds.), Proceedings of the 25th Annual Conference on Research in Undergraduate Mathematics Education (p. 1192–1198). SIGMAA on RUME. Retrieved from http://sigmaa.maa.org/rume/RUME25_Proceedings.pdf

Lee., I., Bettersworth, Z., Zandieh, M., Wawro, M., & Quinlan, I. (2022). Student thinking in an inquiry-oriented approach to teaching least squares. In S. S. Karunakaran & A. Higgins (Eds.), Proceedings of the 24th Annual Conference on Research in Undergraduate Mathematics Education (pp. 349–356). SIGMAA on RUME. Retrieved from http://sigmaa.maa.org/rume/RUME24.pdf

Plaxco, D., Andrews-Larson, C., Smith, J., Kim, M., Mauntel, M., & Watford, M. (2021). Introducing an RME-based task sequence to support the guided reinvention of vector spaces. In S. S. Karunakaran & A. Higgins (Eds.), 2021 Research in Undergraduate Mathematics Education Reports (pp. 222–228). SIGMAA on RUME. Retrieved from http://sigmaa.maa.org/rume/2021_RUME_Reports.pdf

Plaxco, D., Le, L., Wawro, M., & Mauntel, M. (2025). Students’ generalizing activity while using determinant applets. In S. Cook, B.P. Katz, & K. Melhuish (Eds.), Proceedings of the 27th Annual Conference on Research in Undergraduate Mathematics Education (pp. 634–643). SIGMAA on RUME. Retrieved from http://sigmaa.maa.org/rume/RUME27_Proceedings.pdf

Smith, J. (2023). Participatory equity in one undergraduate linear algebra class. In S. Cook, B. Katz, and D. Moore-Russo (Eds.), Proceedings of the 25th Annual Conference on Research in Undergraduate Mathematics Education (p. 726–735). SIGMAA on RUME. Retrieved from http://sigmaa.maa.org/rume/RUME25_Proceedings.pdf

Smith, J., Mauntel, M., & Bettersworth, Z. (2025). Building hallways to collaborative reasoning in an Inquiry-Oriented Linear Algebra activity. In S. Cook, B.P. Katz, & K. Melhuish (Eds.), Proceedings of the 27th Annual Conference on Research in Undergraduate Mathematics Education (pp. 1220–1225). SIGMAA on RUME. Retrieved from http://sigmaa.maa.org/rume/RUME27_Proceedings.pdf

Wawro, M. (2009). Task design: Towards promoting a geometric conceptualization of linear transformation and change of basis. Proceedings of the 12th Annual Conference on Research in Undergraduate Mathematics Education. (pp. 222–228). SIGMAA on RUME. Retrieved from http://sigmaa.maa.org/rume/crume2009/proceedings.html

Wawro, M., Mauntel, M., & Plaxco, D. (2023). “The shape will have no volume”: Relationships students observed about determinants in a dynamic geometric applet. In S. Cook, B. Katz, and D. Moore-Russo (Eds.), Proceedings of the 25th Annual Conference on Research in Undergraduate Mathematics Education (pp. 403–411). SIGMAA on RUME. Retrieved from http://sigmaa.maa.org/rume/RUME25_Proceedings.pdf

Wawro, M., Park, M., Zandieh, M., Bettersworth, Z., & Lee, I. (2023). Student reasoning about the least-squares problem in inquiry-oriented linear algebra. In S. Cook, B. Katz, and D. Moore-Russo (Eds.), Proceedings of the 25th Annual Conference on Research in Undergraduate Mathematics Education (pp. 643–651). SIGMAA on RUME. Retrieved from http://sigmaa.maa.org/rume/RUME25_Proceedings.pdf

Wawro, M., Zandieh, M., & Bettersworth, Z. (in press). An inquiry-oriented approach to least squares in linear algebra. Paper presented at the Congress on European Research in Mathematics Education (CERME), Bolzano, Italy. Proceedings of the Fourteenth Congress of European Research Society in Mathematics Education (CERME14). Free University of Bozen-Bolzano and ERME.

Zandieh, M., Plaxco, D., Wawro, M., Rasmussen, C., Milbourne, H., & Czeranko, K. (2015). Extending multiple choice format to document student thinking. In T. Fukawa-Connelly, N. Infante, K. Keene, & M. Zandieh (Eds.), Proceedings of the 18th Annual Conference on Research in Undergraduate Mathematics Education (pp. 1079–1085). SIGMAA on RUME. Retrieved from http://sigmaa.maa.org/rume/RUME18v2.pdf