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Over the past years we have been involved in a series of stud-
ies researching the teaching and learning of linear algebra at
the undergraduate level in the United States. Through work
with our research colleagues and our own teaching of linear
algebra we have come to reflect on the nature of the cogni-
tive demands that an introductory undergraduate linear
algebra course places on students. Many of the struggles stu-
dents face are related to a central set of ideas. In this article,
we present a framework that offers insight into student think-
ing related to these central ideas. This framework can serve as
a tool for researchers, curriculum designers and instructors to
deconstruct their expert knowledge in order to anticipate chal-
lenges that students may face. The framework also functions
as a diagnostic tool that can be helpful in making sense of
the unexpected and seemingly idiosyncratic ways in which
students often blend ideas, particularly as they begin learning
linear algebra.

The fact that students struggle to develop conceptual
understanding of key ideas in linear algebra is well-docu-
mented (for example, Carlson, 1993; Dorier, Robert,
Robinet & Rogalski, 2000; Harel, 1989b; Stewart &
Thomas, 2009). A central theme in this body of research is
students’ struggles with the formal nature of the course,
which tends to be new for students. In relation to students’
struggles with formality, some have identified particular
modes of representation and reasoning in linear algebra, and
documented struggles in moving among these modes of rep-
resentation and reasoning  (Harel, 1989a; Hillel, 2000;
Sierpinska, 2000). Some have documented student struggles
with particular concepts such as basis, linear dependence
and independence, and span (Carlson, 1993; Hillel, 2000;
Stewart & Thomas, 2010). Rather than address the difficulty
students experience with formality, in this article, we aim
to lay out a framework that examines the introductory level
in more detail. In particular, we identify a variety of impor-
tant interpretations of the matrix equation Ax=b underlying
many of the central ideas in introductory linear algebra.
Throughout the article, A is used to represent an m × n
matrix, x is a vector in Rn, and b is a vector in Rm. Our
framework enables examination of student thinking at a
smaller grain size than the existing literature. The frame-
work offers a lens for making sense of the variety of correct
and incorrect ways students blend and coordinate ideas.

In our work in introductory linear algebra, we have adopted
the recommendations of the Linear Algebra Curriculum Study
Group (LACSG; Carlson, Johnson, Lay & Porter, 1993),
treating a first linear algebra course as a matrix-based course
focused on helping students develop a robust, geometrically

motivated understanding of Rn before delving into an abstract
treatment of vector spaces. We note that many of the central
ideas recommended for a first course in linear algebra by the
LACSG (for example: span; linear dependence and indepen-
dence; existence and uniqueness of solutions to systems of
equations; properties of linear transformations) can be inter-
preted through the lens of Ax=b. 

The examples used in this article come from the first two of
a series of four classroom teaching experiments (Cobb, 2000)
in linear algebra in which whole class instruction and small
group work were video-taped, copies of student work were
retained, and individual problem–solving interviews were
conducted with students. Each classroom teaching experiment
took place in a class of 21-37 students and, in each semester,
between one third and one fourth of students were inter-
viewed. Students were selected on a voluntary basis to obtain
a representative sample of the class as identified by student
performance on classwork prior to the interviews. The stu-
dents were primarily mathematics, science, and engineering
majors at large public universities, and all had completed two
semesters of calculus prior to their work in this course. The
first three examples come from mid-semester interviews, and
the final example comes from an exit interview. 

In this article, we synthesize themes from our research
on student thinking from a variety of interview items involv-
ing the product of a matrix and a vector (for example,
Larson, 2010; Larson, Zandieh, Rasmussen & Henderson,
2009). These earlier analyses yielded an interesting set of
stories about student reasoning across a set of questions,
but these stories lacked an overarching cohesion—an orga-
nizing framework that would help make sense of student
thinking across a variety of mathematical contexts. The
framework we present in this article is the result of an itera-
tive cycle of refinement in which we examined our data,
developed a framework to try to capture important trends,
applied the framework to our data, then adjusted the frame-
work to more fully account for the trends in the data, until
we arrived at a framework that helped us make sense of the
data across a variety of settings. The examples shared here
were selected to illustrate a variety of ways the framework
can be used to make sense of student thinking.  

Conceptual framework: three interpretations
of the matrix equation Ax=b
In this section, we lay out our framework, which consists of
three interpretations of the matrix equation Ax=b: a linear
combination interpretation, a systems interpretation, and a
transformation interpretation. Each interpretation includes
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graphic and symbolic representations, and we highlight the
very different ways that the vector x is conceived in each of
these interpretations.

First, one can interpret the equation Ax=b to mean that the
vector b is a linear combination of the column vectors of
the matrix A, with x functioning as the set of weights on the
column vectors of A (an interpretation related to developing
an understanding of ideas such as span and linear indepen-
dence). We refer to this interpretation as the linear
combination (LC) interpretation. In the second interpreta-
tion, x is a set of values that satisfy the system of equations
corresponding to Ax=b (an interpretation related to devel-
oping an understanding of ideas such as existence and
uniqueness of solutions to systems of equations). We refer to
this interpretation as the systems of equations interpretation.
In the third interpretation, the equation Ax=b corresponds
to a linear transformation, in which the vector x is related
to the vector b through a transformation via multiplication
by the matrix A (an interpretation related to developing an
understanding of properties of linear transformations such as
injectivity, surjectivity, and invertibility). We refer to this
interpretation as the transformation interpretation. 

Table 1 presents the interpretations of A, x, and b entailed
by each of the three interpretations discussed in this article.
Note that Table 1 depicts a prototypical case in R2 in which the
solution is unique. Our framework is not restricted to this
case; it is intended to apply for well-defined multiplication
by any m × n matrix A. While the imagery shown here is most
applicable in 2 and 3 dimensional contexts, we intend the
framework to also be applicable in higher dimensional con-
texts. This will be further discussed in the conclusion section.  

What we highlight in this article is how markedly differ-
ent these interpretations are from one another, and we
identify geometric and symbolic coordinations needed to
operate flexibly within and across settings. In particular, we
discuss how differently students must interpret the vector x in
each of these three interpretations of Ax=b. However, we
first draw on the literature to develop some useful language
for talking about these varied interpretations of x. Student
struggles with the use of variables in real-valued contexts
are well-documented in the research literature at the sec-
ondary and tertiary levels (for example, Schoenfeld &
Arcavi, 1988; Trigueros & Jacobs, 2008; Wagner, 1983).
Philipp (1992) uses the term literal symbol to refer to “the
mathematical use of a letter” (p. 558). He discusses the var-
ied use of literal symbols in mathematics as a potential
challenge for students in middle grades, identifying mathe-
matical conventions for the use of letters to represent
conceptually different entities ranging from universal con-
stants (e.g., π), to unknown values (e.g., x in 2x – 1 = 4), to
varying quantities (e.g., x, y in y = x + 2), to parameters (e.g.,
m, b in y = mx + b). Such distinctions can shed light on the
variety of interpretations students need to develop in linear
algebra. We focus on the role of x both symbolically and geo-
metrically in each of the three interpretations of the matrix
equation Ax=b described in our framework (see Table 1).

Symbolic role of x 

Under the linear combination interpretation, x is interpreted

as a set of weights. This view of x as a set of weights most
closely matches Philipp’s characterization of literal symbols
that function as parameters—values that scale the column
vectors of the matrix A. Under the systems interpretation, x is
interpreted as a solution. This view of x as a solution most
closely matches Philipp’s characterization of literal symbols
that function as unknowns—the entries of the vector are val-
ues to be found by solving the system of equations. Under the
transformations interpretation, x can be interpreted as an
input vector. This view of x most closely matches Philipp’s
characterization of literal symbols that function as varying
quantities—in this case, the vector x is viewed as something
that is coordinated with the output vector b.

Geometric role of x

Under the linear combination interpretation, x is a set of
weights that stretch, shrink, and/or reverse the direction of
the column vectors of the matrix A. Under the systems inter-
pretation, x is a solution to the system of equations
corresponding to Ax=b. Geometrically, this is conceptual-
ized as zero, one, or infinitely many points of intersection.
Under the transformations interpretation, x and b might be
conceptualized as vectors with magnitude and direction that
are related to each other in some way. 

The transformation interpretation is particularly broad,
and we will not go into its full detail in this article. For
instance, Sinclair & Gol Tabaghi (2010) documented pro-
fessors’ ways of using gestures, motion, and time to
informally describe transformations in the context of eigen-
vectors. Zandieh et al. (2012) have documented five distinct
metaphors students use to make sense of the way x and b are
related to each other in situations consistent with our trans-
formations interpretation: (a) input-output, where one puts x
into the equation, and gets b out, (b) morphing, where x
morphs into b, (c) traveling, in which x moves to the location
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Interpretation 
of Ax=b

Symbolic 
Representation

Geometric
Representation

Linear 
combination
(LC)
interpretation

x1a1 + x2a2 = b

A: set of 
column vectors
(a1, a2)
x: weights (x1, x2)
on column vectors
of A 
b: resultant vector

System of
equations
interpretation

a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

A: entries viewed
as coefficients
(a11, a12, a21, a22)
x: solution (x1, x2)
b: two real num-
bers (b1, b2)

Transformation
interpretation

T:x↦b, T(x)=Ax

A: matrix that
transforms
x: input vector
b: output vector
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Table 1. Three views of Ax=b.
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of b, (d) mapping, in which each x corresponds to a specific
b, and (e) machine, in which A acts on x to produce b. Our
framework encompasses such understandings within the
transformation interpretation, and we identify students’ use of
these metaphors in our analysis when possible.  However, our
focus in this paper is on the interplay between the systems,
linear combination and transformation interpretations.

Examples of student thinking
The examples shared in this section were selected to show
how our framework can be used to examine differences
across students (Example 1), and how it can be used to ana-
lyze the thinking of individual students. The latter includes
instances when students are struggling (Examples 2 and 3)
and when students are appropriately and effectively coordi-
nating ideas (Example 4). 

Example 1: Different students, different interpretations 

This set of examples serves to show that students, when
making sense of a situation, may gravitate toward any of
the three interpretations in our framework. Students were
asked the question:

Consider a 2 × 2 matrix A and a vector       .

How do you think about                    geometrically?

This item was originally developed to offer some insight
into how students might coordinate the product of a matrix
and a vector with the product of a scalar and a vector, specif-
ically in the context of eigenvector equations, prior to
receiving formal instruction on them.

One student, Charlene, responded to this question by cre-
ating the inscription shown in Figure 1 and said, “Where
they meet, it would, the x and y would be the same. So it
would be like where the two vectors meet, would be the
solution.”

The view that the solution to an equation can be thought of
as a point of intersection is consistent with the geometric
aspect of the systems of equations interpretation. However,
Charlene was unsure about which two vectors are meeting:

Interviewer: So when you say the two vectors, because
I see you’ve drawn these two arrows
here, what two vectors are you talking
about?

Charlene: I have no clue. I just know that they
should be equal, because there’s an equal

sign […] I just knew that there has to be
a solution, and that’s how you find the
solution. 

Interviewer: Oh, so the solution is where the two intersect?

Charlene: Yeah, because there’s an unknown x and
y, and so there has to be a solution, and
usually the solution is where they meet.
And so I just drew a picture of the two
things meeting, because that’s how I
understood it.

Charlene’s response suggests that the presence of literal sym-
bols x and y and an equals sign were important in evoking her
geometric systems interpretation. Charlene states that it is
two vectors that are meeting, but she does not know which
two vectors are meeting. Charlene’s reference to a solution
occurring when two things meet uses a systems interpreta-
tion. At the same time, she is attending to and attempting to
coordinate this interpretation with the presence of vectors,
which appear in the linear combination and transformation
interpretations, but not in the systems interpretation. 

Nico’s response to this question suggests a strong trans-
formation view in which he considers A as a matrix that
“does something” to the vector
He explains: 

If two times the vector x, y is just going to make the
vector twice as long, I would hope that A times x, y is
doing the same thing if they equal each other. So basi-
cally, there is the vector that we’re gonna get out of
multiplying A by x, y. It’s gonna be the exact same vec-
tor that we’re gonna get by multiplying 2 by x, y.  

This explanation conceives of x and b (in this context
functions like the b in our framework) as vectors which are
coordinated with one another via the actions of multiplica-
tion by the matrix A and multiplication by the scalar 2. In
particular, Nico’s transformation view draws on Zandieh et
al.’s (2012) metaphors of input/output, machine (does some-
thing to), and morphing (twice as long). 

In contrast, Karl takes a linear combinations view, argu-
ing that the vector    stretches the columns of the matrix A.
This interpretation emerged in the context of his explanation
of why he thought that the determinant of A must be two: “If
the two sides equal, and the x, y vector does not change, then
you have, you know, A has to equal two and A is a matrix, the
two has to be a determinant.” In elaborating this remark, Karl
offered a creative (albeit incorrect) argument, as follows.

Karl sketched the graph shown in Figure 2 (overleaf) and
argued  that:

by multiplying this original set of vectors, which would
be matrix A, by x and y, you could potentially maybe
increase the length of these vectors, thus changing the,
the overall determinant, so overall area of the figure
that is formed.

When asked, he clarified that the two vectors starting from
the origin in his graph were meant to represent the columns
of the matrix A. He wrote the matrix to the right of the graph
(see Figure 2) and explained as follows:
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So these [Karl points to the two vectors he has drawn
which start at the origin] would be the two vectors, the
you know, a1, b1, and a2, b2, which is represented by the
A matrix. And then when combining the A matrix with
the x, y, vector, you could potentially increase the
length or change, change the overall area, overall deter-
minant of the space. Essentially uh, closed in by the
vectors.

Karl’s argument was based on the idea that the determinant
of a 2 × 2 matrix is the (signed) area of the parallelogram
created by the column vectors of that matrix, an idea he
coordinated with the interpretation that x and y act as
weights on the column vectors of the matrix (an LC inter-
pretation). While incorrect, we highlight the fact that Karl’s
reasoning interpreted matrix multiplication as a weighting of
the columns of the matrix, evidencing an LC interpretation.

Taken together, these interpretations of the equation Ax=2x
illustrate how differently students interpret this kind of equa-
tion. The variety in students’ interpretations is highlighted by
their views of x: x as a solution (Charlene), x as a vector to
be transformed (Nico), and x as a set of weights (Karl). 

Example 2: One student’s under-coordinated interpreta-
tions 

In this example, Charlene exhibits a computational LC
approach that is not coordinated with a geometric view. We
see this in her response to the question

She responsed by representing this as a linear combination
of the column vectors with weights of 2 and 3, respectively.
However, when the interviewer asked her if she has a geo-
metric way of thinking about the “situation” in Figure 3,
Charlene responded: 

Not really, I mean you can draw it and everything, but
I don’t really remember how to do that. I don’t really
think of it geometrically, I see the numbers and I do it.
But I don’t really, we learned it in class, but I don’t
really remember it, because it wasn’t something I
understood very well. 

In this way, we see that Charlene utilizes an LC computa-
tional strategy, but does not connect this with the
corresponding LC geometric interpretation.

For the question

Charlene rewrote the linear combination in the question as
a matrix multiplication, drew an equals sign, drew an arrow
from the linear combination as if to indicate it to be part of
the details of her computation, drew another equals sign, and
then wrote the resulting vector.

Thus we see that for Charlene, a linear combination of
vectors and the product of a matrix and a vector are compu-
tationally equivalent, and that she seems to see a linear
combination of vectors as a step in the computation of the
product of a matrix and a vector. 

Although Charlene claimed that she does not have a geo-
metric way of thinking about the inscriptions in Figure 3 (the
product of a matrix and a vector or the linear combination
of vectors), recall that she offered a strongly geometric sys-
tems interpretation in the previous example. In that example,
Charlene interpreted x as a solution that is unknown and is
represented geometrically by an intersection point. 

Taken together, these examples show how Charlene has
some correct interpretations of Ax=b, but does not connect
her LC computation to the corresponding LC geometric
view and does not connect her systems geometric view to a
symbolic representation. This illustrates just how challeng-
ing it can be for students to coordinate symbolic and
geometric views within each interpretation of Ax=b. 

Example 3: One student’s incorrectly coordinated inter-
pretations

The previous example showed how a student can draw on
two different, uncoordinated but correct interpretations of
Ax=b. This example serves to illustrate how students can
have blended and/or partial interpretations.

Melissa revealed a mix of systems and linear combination
interpretations in her response to the question

Computationally, Melissa showed two different, correct
ways of performing this computation as shown in Figure 5
(top and center), without the x and y, which she added later,
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Figure 2. Karl shows how he thinks x and y could double the
area of A.

Figure 3. Charlene’s product of a matrix and a vector. 

Figure 4. Charlene’s linear combination of vectors. 
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as explained below. She explained her second method of
computation, which is consistent with an LC computational
strategy: 

Melissa: You could write it separately, you’d have
the vector 1, 6. Plus the vector 3, -1.
Times 2 and times 3. And then you just
multiply, you do it across, you do 2 times
1 plus 3 times 3. If this was x and this was
y. [At this point, Melissa added the x and
the y to the inscription shown in Figure 5,
center] 

Interviewer: If this was x, and that was y?

Melissa: You don’t even have to do that, I don’t
know why, but sometimes I think of it
with x and y, as if it’s an equation.  

Melissa elaborated, expressing a reasonable connection to a
systems of equations interpretation, “When I think about it,
I guess it makes me think of […] as this is x, like one x plus
three y [pointing to top row of the matrix], and this is six x
minus y [pointing to the bottom row of the matrix], as equa-
tions.” This statement indicates that when she looks at the
matrix A, Melissa sometimes interprets the entries of the
matrix as coefficients in a system of equations. However, as
she continues to explain her thinking, it becomes apparent
that the she is blending her systems interpretation and her
LC interpretation in a way that is potentially problematic: 

I mean, say you had started out with x plus three y
[writes x + 3y] as one, and six x minus y [writes 6x - y]
as another, and the vector two, three was acting on
these [points at the expressions she had just written].
If you want to know what, I think if you wanted to
know what the result would be if the vector 2, 3 acted
on this, would be two x plus nine y, and twelve x minus
three y [writes 2x + 9y and 12x - 3y].

In the language of our Ax=b framework, we see Melissa
simultaneously interpreting the x as weights 2 and 3 (per
her LC interpretation) and as unknowns x and y (per her sys-
tems interpretation). However, rather than viewing the

weights and unknowns as interchangeable, she integrates
them both into her explanation, evidence of a problematic
blending of the two views. 

When asked how she thought geometrically about the
matrix times the vector in this question, Melissa began by
plotting the column vectors of the matrix as shown in Fig-
ure 5 (bottom):

I wouldn’t normally, but I mean, if I was asked to think
of it geometrically, I would think of these as vectors,
the vector 1, 6 and the vector 3, -1. [Creates inscrip-
tion shown in Figure 5, bottom] Don’t know where 2,
3 would come in, oh no, I don’t, maybe I do, that was 2,
3. [Adds a dot at the point (2, 3) in Figure 5, bottom] I
guess, I’m trying to get 2, 3.  I don’t know where 2, 3
would come in. I thought maybe that it might be where
you’re trying to shrink the one, and move it around so
you get the 2, 3, but I don’t know why you’d want the
vector 2, 3.

In a correct LC interpretation, one would use 2 and 3 as
weights on the column vectors in order to construct the out-
put vector. Using our framework for interpreting the
equation Ax=b, we can see that Melissa is drawing on a par-
tial LC interpretation in that she is attempting to use a
weighting of the column vectors of the matrix A as part of a
geometric construction. However, she does not specify the
source of the weights of the column vectors, and she con-
flates the roles of x and b in trying to identify which vector
is being constructed. 

Example 4: One student’s effectively coordinated inter-
pretations 

Our final example comes from a 90-minute problem solving
interview in which the student was given a single, open-ended
problem–solving activity, known as the car rental problem,
that was selected as an unfamiliar problem context (Larson,
2010; Larson & Zandieh, 2011). This example shows a stu-
dent coordinating two interpretations in productive ways.
More specifically, we see a student beginning with a systems
interpretation and shifting to a transformation interpretation in
a way that affords him computational efficiency. 

In the problem, students are presented with a scenario in
which there is a car rental company that has three locations
in a city. Patrons of the company are allowed to return cars
at any of the three locations and the problem describes what
percentage of cars from each location are returned where
(see Figure 6, overleaf). For example, each week, 95% of
the vehicles rented from the Airport location are returned
at the Airport location, 3% rented at the Airport are returned
Downtown, and 2% of the cars rented from the Airport
location are returned at the Metro location. Students are
given an initial distribution of cars (500 at Airport, 250
Downtown, 200 at Metro), and asked to describe the long-
term distribution of the cars if the cars are returned at the
described rates. 

In order to interpret the problem situation and find a math-
ematical way to represent it, Matthew first drew on a
systems view. He initially wrote a system of three expres-
sions that used a, d, and m to represent the values of the
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Figure 5. Melissa shows how she thinks about the product
of a matrix and a vector.
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number of cars at the airport, downtown and metro (see Fig-
ure 7). He then continued in the systems view by rewriting
the system of expressions as a system of equations that cap-
tured the role of time. In other words, he wrote three
expressions, each of which detailed a computation for deter-
mining the number of cars at a specific location, based on
the number of cars at each location the previous week. 

About 28 minutes into the 90-minute interview, Matthew
rewrote the system as the product of a matrix and a vector.
The recursive nature of the relationship initially served as a
source of challenge for Matthew: he recognized that he
could find the configuration of cars based on the data from
the previous week, but struggled to see how this was help-
ful in determining the long term behavior given only the
initial configuration of cars. In discussing the possibility of
using matrix multiplication to compute the number of cars
during an arbitrary week x, Matthew commented, “To do
that, we’d have to know what the week before it was. And
we only know the initial value.” His comment that knowing
the week before would yield the configuration during week
x is consistent with a transformations view; in fact, he uses
function notation to indicate this relationship. In terms of
dealing with the recursive issue, Matthew eventually recog-
nized that he could use his calculator to repeatedly multiply
the initial configuration of cars by the matrix to determine
the configuration of cars after many weeks had passed.  

In this example, we see a student begin computationally
with a systems approach, and strategically shift to a trans-
formation approach for computational efficiency. In the
language of our Ax=b framing, after writing a systems-like
set of expressions, Matthew recognized that given x, he can
determine b. By rewriting the coefficients in his set of
expressions as a matrix, Matthew treated the matrix A as a
whole, conceptualizing it as something that can act on x (the
configuration of cars at any point in time) to compute b (the
configuration of cars one week later), instead of relying on
a system of computations with a, d, and m.

Conclusion 
In this article, we have presented a framework detailing
three symbolic and geometric ways in which students make
sense of the matrix equation Ax=b. By detailing the spe-
cific ways the literal symbols A, x, and b are viewed in each
interpretation, we have shown how this framework can serve
as a diagnostic tool for making sense of student thinking.
The first example showed how, on a given question, differ-
ent students may gravitate toward any of the three
interpretations in our framework. The second example
showed how students can draw on isolated aspects of par-
ticular interpretations (LC & systems) without coordinating
symbolic and geometric aspects within interpretations. The
third example showed how students can hold multiple cor-
rect interpretations (LC & systems) that are incorrectly
blended. The final example showed a student effectively
first developing a systems interpretation of a real-world
problem, and then shifting to a transformation view in order
to achieve computational efficiency. 

Our framework highlights the complex nature of the inter-
pretations and coordinations asked of students at even the
most introductory level in linear algebra. While the exam-

ples used to illustrate the framework in this paper are situ-
ated in 2 and 3 dimensional contexts, we argue that the
interpretations presented here have the potential to offer
insights for higher dimensional settings. First, there is evi-
dence in the literature that geometric interpretations in lower
dimensional settings are utilized by both students and
research mathematicians for intuition in higher dimensions
(see, for example, Wawro, Sweeney & Rabin, 2011). Sec-
ond, the symbolic views of each interpretation generalize to
higher dimensions using standard mathematical notation.
The invertible matrix theorem offers an example of this type
of generalization and consolidation of notation. Assuming
A is an invertible n × n matrix, three equivalent statements
highlight the importance of the three interpretations: column
vectors of A span Rn (definition of span is highly consistent
with LC view), Ax=0 has the unique solution x=0 (empha-
sizes systems interpretation), and the transformation x ↦Ax
maps Rn onto Rn (emphasizes transformation interpretation).
Establishing equivalence of any of these statements entails
coordination of interpretations in the framework.  

In research, teaching, and instructional design, anticipa-
tion of student thinking is needed to help students develop
a set of rich, well-connected interpretations. We offer this
framework to help teachers, researchers, and curriculum
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Figure 6. Redistribution rates in the car rental problem. 

Figure 7. Matthew’s written work.
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designers better understand ways of supporting students in
developing the ability to move flexibly among interpreta-
tions to powerfully leverage the analytic tools of linear
algebra.  
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Any idea or problem or body of knowledge can be presented in a form simple enough so that
any particular learner can understand it in a recognizable form.

The structure of any domain of knowledge may be characterized in three ways, each affect-
ing the ability of any learner to master it: the mode of representation in which it is put, its
economy, and its effective power. Mode, economy, and power vary in relation to different ages,
to different “styles” among learners, and to different subject matters.

Any domain of knowledge (or any problem within that domain of knowledge) can be repre-
sented in three ways: by a set of actions appropriate for achieving a certain result (enactive
representation); by a set of summary images or graphics that stand for a concept without defin-
ing it fully (iconic representation); and by a set of symbolic or logical propositions drawn from
a symbolic system that is governed by rules or laws for forming and transforming proposi-
tions (symbolic representation).

From Bruner, J. S. (1966) Toward a Theory of Instruction, pp. 44-45. Cambridge, MA: The
Belknap Press of Harvard University Press. 
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