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Roots of Linear Algebra: An Historical Exploration
of Linear Systems

Christine Andrews-Larson

Abstract: There is a long-standing tradition in mathematics education to look to his-
tory to inform instruction. An historical analysis of the genesis of a mathematical idea
offers insight into: (i) the contexts that give rise to a need for a mathematical construct;
(ii) the ways in which available tools might shape the development of that mathemati-
cal idea; and (iii) ways in which students might make sense of an idea. In this paper, I
discuss historic contexts that gave rise to considerations of linear systems of equations
and their solutions, as well as implications for instruction and instructional design.

Keywords: Systems of linear equations, linear algebra, history.

1. INTRODUCTION

History provides a wealth of resources with the potential to inform the teach-
ing and learning of mathematics [2,6,22]. Instructional insights can be gleaned
from history by considering the contexts that gave rise to a need for a mathe-
matical idea, the ways in which available tools might shape the development of
that idea, and the ways in which students might make sense of that idea. Such
insights can be particularly important for instruction and instructional design
in inquiry-oriented approaches where students are expected to reinvent signifi-
cant mathematical ideas. Sensitivity to the original contexts and notations that
afforded the development of particular mathematical ideas is invaluable to the
instructor or instructional designer who aims to facilitate students’ reinvention
of such ideas. This article explores the ways in which instruction and instruc-
tional design in linear algebra can be informed by looking to the historical roots
of the subject.

Broadly speaking, this article is organized around a set of compelling
examples from history that mark important conceptual developments in lin-
ear algebra’s history (with an emphasis on developments relating to systems of
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linear equations and their solution sets), and that have the potential to inform
instruction and instructional design. The discussion and analysis attends to
the role of context, mathematical tools and representations, and the central
ideas and driving questions that drove development. The work is structured
around these issues because of their potential to inform the design and use
of problem-solving tasks for students – particularly with regard to contextual
framings for tasks, anticipating the role of tools and notation in affording stu-
dents’ productive engagement in tasks in ways that are likely to align with
instructional goals, and identification of key mathematical ideas, particularly
those that merit, demand and/or came about through reflective abstraction.

Three of the most surprising things I have learned from my excursion into
the literature on the history of linear algebra have to do with Gaussian elimi-
nation. The first surprise was learning that the idea of systematic elimination
that underlies Gaussian elimination preceded Gauss by over 2000 years – there
is evidence that the Chinese were using an equivalent procedure to solve sys-
tems of linear equations as early as 200 BC [13,24]. The second surprise was
that Gauss developed the method we now call Gaussian elimination without
the use of matrix notation as it is commonly used in Western mathematics
today. The third surprise was that Gauss developed the method we now call
Gaussian elimination to find the best approximation to a solution to an over-
determined, inconsistent system of equations that had twice as many equations
as unknowns.

This piece begins with a brief discussion of the theoretical underpinnings
of this work, followed by a broad overview of several important historical
developments in linear algebra. Next, the narrative highlights Gauss’s work
that gave rise to the method of solving systems of linear equations using what
is now commonly referred to as Gaussian elimination; this is contrasted with
the development of a remarkably similar procedure developed in ancient China
∼ 200 BC. The concluding discussion focuses on implications for instruction
that emerge from this analysis, the contexts that give rise to a need for ideas
relating to linear systems of equations, and the ways in which available tools
and representations shaped the development of those ideas. This discussion
informs the identification of central, underlying ideas and questions that drove
the development of a coherent theory of systems of linear equations.

The need for a mathematical idea can prompt development when that need
(e.g., through a problem or context) coincides with sufficient tools and nota-
tion to address the problem. Methods for solving systems of linear equations
with unique solutions required less sophisticated notational tools and solution
methods than systematically approximating solutions to inconsistent systems
or solving systems with infinitely many solutions. Efforts to comprehensively
characterize linear systems and their solutions grew into the theory of deter-
minants; efforts to approximate solutions to inconsistent systems gave rise to
Gaussian elimination. Significant advances in notation (namely the develop-
ment of a convention for denoting a parameter) facilitated a historic shift from
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viewing solutions to linear systems as simply results of mathematical processes
to viewing solutions to linear systems as mathematical objects in their own
right. The contexts and notation that relate to these advances are detailed below,
as are recommendations for helping students shift toward conceptualizing, as
mathematical objects, the solutions to systems of linear equations.

2. THEORETICAL BACKGROUND

This work reflects the underlying view espoused by Freudenthal [8] that math-
ematics is an inherently human activity that takes place within and relative to
social and cultural contexts. In this capacity, activity is said to be mathematical
in nature when it aims to develop increasingly sophisticated and general ways
of organizing, quantifying, characterizing, predicting, and modeling the world
by either creating new mathematical tools for dealing pragmatically with chal-
lenging issues that exist within a social/cultural context, or by using the tools
and language of the existing mathematical community to reason and problem
solve [15].

I also draw on Sfard’s [20] distinction between structural (object) and
operational (process) conceptions of mathematical ideas. In the structural view,
one conceptualizes a mathematical idea as an object that can be seen and
manipulated as a whole, without detailing the process that gave rise to that
object. Under the operational view, a mathematical object is thought of as “a
potential rather than actual entity, which comes into existence upon request in
a sequence of actions” [20, p. 4]. For example, when a child first learns about
counting and numbers, he or she cannot conceive of the meaning of the number
five without counting up to it. Thus, a child who must count up to the number
five in order to be able to conceptualize it does not yet have a structural view
of numbers, but rather exhibits only an operational understanding. Sfard offers
compelling evidence on both the individual psychological level and the broad
historical level that illustrates how mathematical objects (e.g., rational num-
bers, negative numbers, complex numbers) are often operational in their origin,
positing that it is in fact the reification of a mathematical process that gives rise
to a mathematical object. Five becomes a mathematical object in a child’s mind
when he or she comes to see it as a number that has meaning (e.g., it represents
the cardinality of a set of five objects) that can be thought of separately from
the underlying process of counting to five. Both process and object views are
valued as important aspects of the development of mathematical ideas.

3. IMPORTANT DEVELOPMENTS IN THE HISTORY OF LINEAR
ALGEBRA

Historians of mathematics differ on what they view to be the most important
contributions to the history of linear algebra [6, 7, 14]. However, there seems to
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be consensus that the history of linear algebra is situated in two related points
of view. One point of view is that the development of a coherent, compre-
hensive characterization of systems of equations and their solutions is seen
as a driving, underlying force behind the subject. I refer to this as the “sys-
tems view.” The other point of view is that, central to what we now consider
to be linear algebra, is the development of a formal, axiomatic way of alge-
braically defining relations among and operations on vectors. I refer to this
as the “vector spaces and transformations view.” I consider both approaches
to be central to linear algebra, but I find the distinction to be useful for con-
textualizing my analysis and discussion of the history of linear algebra. This
paper focuses primarily on the “systems view” in that it focuses primarily on
the development of characterizations of systems of linear equations and their
solution sets rather than the development and study of vector spaces and their
properties.

3.1. Determinants: System Solving Origins

With the exception of the solution methods developed around 200 BC in China,
a limited amount of progress1 in the development of a comprehensive theory
of systems of linear equations and their solutions was made until the 1600s
and 1700s when determinants emerged (separately) in both Japan and Europe
[6,16]. Before the development of determinants, the ancient Chinese methods
for solving systems of equations used counting boards to represent problem
constraints in rectangular arrays and to specify the sequence of manipulations
to be performed in order to solve a given system. This method is described in
greater detail later in this paper.

In 1683, Japanese mathematician Seki Kowa developed a version of deter-
minants as part of a method for solving a nonlinear system of equations [16].
This method was described in a way that relied on the positions of coefficients
arranged in a rectangular array, an indicator of the strong influence of Chinese
mathematics on Japanese mathematics. Mikami [16] recreated Seki’s illustra-
tion from the original manuscript for 2 x 2 and 3 x 3 cases as shown below in
Figure 1 with the following explanation:

Figure 1. Mikami’s recreation of Seki’s diagrams.

1Methods for solving more than one equation through substitution and elimination
were developed during the 1500s through the works of Cardano, Stifel, Buteo, Gosselin,
and others. (See [12] for a treatment of this.)
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The dotted and real lines, or the red and black lines in the original manuscript, are
used to indicate the signs which the product of the elements connected by these
lines, will take in the development, the dotted lines corresponding to the positive
sign and the real lines to the negative sign, if all the elements be positive. (p. 12)

A 2 x 2 example illustrates how this process yields a determinant as one
would expect to see it today, although with a reversal of sign. Thus

becomes –ad+bc because a and d are connected by a ‘‘real’’ (solid) line, so
their product takes a negative sign whereas b and c are connected by a dotted
line, so their product takes on a positive sign.

In 1750, Swiss mathematician Gabriel Cramer independently developed a
way of specifying the solution to a system of linear equations as a set of closed-
form expressions comprised purely of fixed but unspecified coefficients of the
given system. (See [13] for a treatment of this.) Determinants can be seen in
the denominators of these expressions, and Cramer generalized a method for
their computation by leveraging the combinatorics of cleverly superscripted but
unspecified coefficients. The representation Cramer [5] used to denote a system
of equations with as many equations as unknowns is shown below in Figure 2.
The upper case Zis, Yis, Xis, Vis denote coefficients while the lower case z,
y, x, v denote unknowns. Note that Cramer’s use of superscripts is consistent
with contemporary use of subscripts in that they denote indexing (rather than
exponentiation).

Cramer explicitly described closed-form solutions for such systems in 1, 2,
and 3 unknowns; his solution for three equations and three unknowns is shown
in Figure 3.

Although Cramer did not explain how this result was obtained, he offered
a general rule for solving, framed in terms of the combinatorics of the super-
scripts. In this way, an n×n system is solved by forming n fractions, each

Figure 2. Cramer [5] denotes a system of equations.

Figure 3. Cramer’s solution to a system of three equations in three unknowns.
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of which has n! terms in both the numerator and denominator. Katz [13]
includes a translation of Cramer’s description of how the denominators (i.e.,
determinants) are computed:

Each term is composed of the coefficient letters, for example ZYX, always writ-
ten in the same order, but the indexes are permuted in all possible ways. The sign
is determined by the rule that if in any given permutation the number of times a
larger number precedes a smaller number is even, then the sign is “+” otherwise
it is “-”. [13, p. 192]

Cramer noted that a zero denominator indicates that the system does not
have a unique solution [13]. Furthermore, he specified that in the case that the
denominator and all of the numerators are zero, the system will have infinitely
many solutions, whereas when the denominator is zero but any one of the
numerators is nonzero, the system will have no solution.

I argue that Cramer’s approach would have been impossible without a shift
in the use of algebraic notation introduced by French mathematician François
Viète in the late-16th century. The use of literal symbols (e.g., using a variable
such as x to represent an unknown fixed quantity, a fixed but unspecified quan-
tity, or a varying quantity) was revolutionized in 1591 when Viete introduced
the convention of using vowels to represent unknown quantities and conso-
nants to represent quantities that are known but unspecified [3]. The particulars
of his convention are no longer in use, but the distinction that arose was pivotal
in shaping contemporary algebraic notation. This advance can be thought of as
the specification of the idea of a parameter [3].

For both Seki and Cramer, the way in which their notational system struc-
tured the coefficients shaped the way the determinant was specified. Seki’s
articulation of the determinant leveraged the physical arrangement of the coef-
ficients in order to specify the operations to be performed on those coefficients.
Cramer’s articulation of the determinant relied on the clever use of index-
ing in the coefficients to create a closed-form expression. It is plausible that
Cramer’s notational system affords an object view of systems of equations
more strongly than does Seki’s, per Cramer’s observation about what the value
of the determinant reveals about the solution to the system.

3.2. Euler’s Inclusive Dependence

A second important development in the theory of systems of linear equa-
tions also took place in 1750. Swiss mathematician Leonhard Euler questioned
whether a system of n linear equations with n unknowns has a unique solution,
using the following system of equations as a counterexample: 3x − 2y = 5
and 4y = 6x − 10 [6]. This observation was made as part of a discussion of
Cramer’s paradox, which deals with the number of points of intersection of
algebraic curves and the number of points needed to determine an algebraic
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curve. Euler gave additional examples with larger systems, and pointed out that
it is possible for an equation to be “comprised of” or “contained in” others [6,
p. 7]. Dorier tags this notion of Euler’s with the term “inclusive dependence,”
pointing out that our modern notion of linear dependence is more carefully
defined and more sophisticated [6, p. 7]. The very language that an equation
might be “contained in” or “comprised of” others suggests that early concep-
tions of linear dependence involved thinking of dependence as a property of an
equation, or perhaps as a relationship between or among equations – rather than
thinking of it as a property of a set of equations. Readers who have taught lin-
ear algebra will likely recall hearing students make analogous comments about
certain vectors that are “dependent on” other vectors (rather than stating that
those certain vectors are linear combinations of the other vectors, as the math-
ematician in us might hope). I posit that this is a natural, intuitive, informal
way of conceptualizing notions of dependence, and that it is a useful concep-
tion that can serve as a basis for formalization. Historically speaking, Euler’s
observation certainly raised an issue that contributed to the development of our
current conception of linear dependence.

Both Cramer’s and Euler’s work around systems of linear equations took
place in the context of theory of curves, and although their observations differ
in focus, both point to a central related issue. Cramer’s comment identi-
fies what the value of his denominators (i.e., the determinant) reveals about
the uniqueness of the solution set to a square system of equations, whereas
Euler’s inclusive dependence points to the lack of a unique solution when there
is redundancy of information in the equations themselves (perhaps implic-
itly assuming the same number of equations as unknowns). The relationship
between Cramer’s comment about determinants and Euler’s observation about
inclusive dependence is an important idea in any introductory linear algebra
class; namely, that a consistent square system will have “inclusive dependence”
(as Euler would describe it) if and only if it has infinitely many solutions (which
is when Cramer’s denominators or the determinant is zero).

Like Cramer’s observation, Euler’s observation is significant in that it
marks a qualitative shift in perspective from his predecessors’ process view
of solutions – his reasoning identified properties of the system itself that held
implications for the system’s solution set. Euler’s observation contrasts with
earlier perspectives where mathematical reasoning focused primarily on the
development and use of processes for solving linear systems, and shifts toward
a notion of a solution to a system of equations as a mathematical object with
its own properties (in this case, uniqueness).

3.3. Other Important Developments

In 1811, Gauss developed a method of least squares for finding the best
approximate solution to an over-determined (and inconsistent) system of linear
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equations that had 12 equations and six unknowns. This system of equations
used observational measurements to model the orbit of a celestial body. It was
in this context that Gauss outlined the method of Gaussian elimination, which
he developed without the use of matrices [10]. His discussion in this and ear-
lier works reflects a complete understanding of the conditions under which a
system has no solution, a unique solution, and infinitely many solutions. For
instance, Gauss gave a detailed explanation of the relationship between elim-
ination and the nature of the solution set to a system of linear equations in
his 1809 Theoria Motus (Theory on the Motion of Heavenly Bodies moving in
Conic Sections):

We have, therefore, as many linear equations as there are unknown quantities
to be determined, from which the values of the latter will be obtained by com-
mon elimination. Let us see now, whether this elimination is always possible, or
whether the solution can become indeterminate, or even impossible. It is known,
from the theory of elimination, that the second or third case will occur when one
of the equations . . . being omitted, an equation can be formed from the rest,
either identical with the omitted one or inconsistent with it, or, which amounts to
the same thing, when it is possible to assign a linear function αP+βQ+γ R+δS+
etc., which is identically either equal to zero, or, at least, free from all the
unknown quantities. [9, p. 269].

Thus, we see that Gauss did understand that any system of linear equations can
have no solution, a unique solution, or infinitely many solutions. Furthermore,
he explained how one can identify the nature of the solution set based on
the elimination process. He did not give a detailed explanation of Gaussian
elimination in this 1809 work, but one appeared in an 1811 piece. Gaussian
elimination, in the form in which it was originally proposed in 1811, is dis-
cussed in greater detail later in this paper. Recall that Gauss did not use matrices
for notating systems of equations or performing elimination.

Unlike in Chinese and Japanese traditions, matrices did not come into use
in Western mathematics until the late 1800s. The term matrix was coined in
1850 by the English mathematician James Joseph Sylvester, who was doing
work with determinants.2 In 1857, Sylvester’s friend and colleague Arthur
Cayley published his Treatise on the Theory of Matrices [4]. In this treatise,
Cayley introduced matrices from a systems of equations point of view (as
shown in Figure 4), and then proceeded to develop his theory of matrices as
mathematical objects that could be added, multiplied, inverted, and so on.

It was not until the late 1800s that we see a shift from a systems view of lin-
ear algebra to a vector spaces view, and the work of Frobenius and Peano were

2Determinants were studied extensively in Western Europe prior to this, e.g., the
description earlier in this paper regarding Cramer’s work 100 years earlier. A more
complete discussion of the history of determinants in Western Europe is beyond the
scope of this paper but is summarized by Katz [13].



Roots of Linear Algebra: An Historical Exploration 515

Figure 4. Cayley introduces matrices from a systems point of view [4].

notable in this shift. In 1875, Frobenius offered a definition for linear depen-
dence and independence that worked for both equations and n-tuples, and that
is equivalent to the modern standard definition. According to Dorier [6], this
treatment of equations and n-tuples as equivalent objects in terms of linearity
served as a significant step toward the contemporary treatment of vectors in
linear algebra.

Kleiner discusses Italian mathematician Giuseppe Peano’s 1888 formal-
ization of the first modern definition of a vector space [14]. Katz argues that
Peano’s formal defnition of vector spaces 295 did not gain much attention
or popularity until 1918 when they reappeared in Hermann Weyl’s book
Space-Time-Matter [13]. Here Weyl articulated an important relationship
between a “systems view” and a “vector spaces and transformations view” of
linear algebra:

Weyl . . . brings the subject of linear algebra full circle, pointing out that by
considering the coefficients of the unknowns in a system of linear equations in n
unknowns as vectors, ‘our axioms characterize the basis of our operations in the
theory of linear equations’.” [13, p. 204]

The remainder of this article focuses on the development of Gaussian elim-
ination by Gauss in Europe in the 1800s, and the development of a remarkably
similar procedure in ancient China. Both these accounts endeavor to describe
the context(s) that created a need to solve systems of linear equations and the
representations used to notate and manipulate those systems. The final section
of the paper includes a discussion of the ways in which these historical insights
might serve to inform instruction and instructional design.

4. EUROPEAN DEVELOPMENT OF GAUSSIAN ELIMINATION3

Gauss developed his method of Gaussian elimination in the context of astron-
omy. He was working to determine information about the elliptical orbit of

3In this section, I draw heavily on translations of Gauss’s [9,10] original works as
well as Kleiner’s [14] and Althoen and Mclaughlin’s [1] work in looking at the history
of linear algebra.
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Figure 5. The first two of 12 linear equations in six unknowns [10].

an asteroid named Pallas, which was discovered in 1802 by Heinrich Olbers.
At the time, Pallas was considered to be a planet. Gauss had a set of observa-
tional measurements, collected over a number of years, which could be used to
determine the eccentricity and inclination of the orbit of Pallas. In order to do
so, Gauss used his data set, together with then current theories of astronomy,
to create a system of linear equations with six unknowns and 11 equations. (He
actually began with 12 equations, but one of them seemed wildly inaccurate,
so he discarded it.) The system carried conflicting constraints that arose due
to measurement error. The first two equations from his system are shown in
Figure 5.

In order to find a “best” approximation to a solution to this system of
equations, Gauss developed a method of least squares. Gaussian elimination
was developed as part of this method. Gauss explained the importance of
considering the closest “solution” to systems that do not have a solution:

If the astronomical observations and other quantities, on which the computation
of orbits is based, were absolutely correct, the elements also, whether deduced
from three or four observations, would be strictly accurate (so far indeed as the
motion is supposed to take place exactly according to the laws of Kepler), and,
therefore, if other observations were used, they might be confirmed, but not cor-
rected. But since all our measurements and observations are nothing more than
approximations to the truth, the same must be true of all calculations resting
upon them, and the highest aim of all computations made concerning concrete
phenomena must be approximate, as nearly as practicable, to the truth. But this
can be accomplished in no other way than by a suitable combination of more
observations than the number absolutely requisite for the determination of the
unknown quantities. [9, p. 249]

In Theoria Motus [9] Gauss offered an overview of his least squares
method, and a much more elaborate explanation of the Gaussian elimination
portion of this method is given in his 1811 piece Disquisitio de Elementis
Ellipticis Palladis [10]. Here, Gauss first defined functions (Vi, i = 1, . . . , μ,
where μ is presumed to be a positive integer) of a finite-valued positive integer
v number of unknowns (p, q, r, s, . . .), and treated the observations as func-
tion values (Mi). Note that Gauss’s use of a superscript is consistent with the
contemporary convention for subscripts; his superscripts are used for index-
ing, rather than to indicate that a function or variable is being composed or
exponentiated. When μ > v, he noted that “an exact representation of all the
observations would only be possible when they were all absolutely free from
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error . . . this cannot, in the nature of things, happen” [9, p. 254]. Gauss argued
that the most probable values of the unknowns are those such that the sum of
the squares of the differences between the computed and observed values of the
functions (i.e., the sum of the squares of the errors ei defined as ei = Vi−Mi)
is minimized. By expressing the functions in general linear form (Vi = ni +
aip + biq + cir + dis + . . . for real numbers ni, ai, bi, ci, di . . . with i = 1,
. . . , μ) and noting that the sum of squares of the errors is minimized when
the partial derivatives (with respect to unknowns p, q, r, s, . . .) are all zero,
Gauss obtained a system of equations in terms of the errors ei, each of which
can be expressed in terms of unknowns p, q, r, s, . . . Rewriting this system of
equations in terms of p, q, r, s, Gauss subsequently described how the first vari-
able p can be eliminated from the system of equations. He then described how
one can continue eliminating one variable at a time until only one remains, at
which point one could determine the value of the single unknown quantity and
perform back substitution to determine the values of the other unknowns.

The central aspect of this process that is relevant to the contemporary treat-
ment of Gaussian elimination is the sequential use of substitutions performed
in such a way that one variable is removed with each step of the process until
only one variable in one linear equation remains. The value of this single vari-
able can then be determined from the equation, and the value is then substituted
into the previous equation with two unknowns to solve; this process is repeated
until all unknown values have been found [1].

5. SOLVING LINEAR SYSTEMS IN ANCIENT CHINA

The Nine Chapters on the Mathematical Art is an ancient Chinese text com-
prised of 246 problems and solution methods. It is believed to have been
produced sometime between 200 BC and 50 AD. An earlier version of the text
was burned during the reign of Emperor Ch’in Shih Huang, a controversially
tyrannical ruler credited with the unification of China as well as construction
of the Great Wall of China [24]. The problems in this text arose from contexts
such as field measurement (which gives rise to the development of geometry,
fractions, and square and cube roots); trade, commerce, and taxation (which
give rise to the development of ratios, proportions, and systems of equations);
and distance–rate–time problems.

5.1. China’s Mathematical Toolbox ∼200 BC

In order to contextualize the mathematics that appears in the Nine Chapters,
it is important to consider the mathematical tools and ideas that the Chinese
had at their disposal at the time it was written. One of the most prominent
mathematical tools in common use around 200 BC in China was the counting
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board, on which counting rods made of bamboo or ivory were arranged in rect-
angular arrays so that various calculations could be performed [21]. Counting
rod arithmetic was the central method of calculation in Chinese mathematics
beginning around 500 BC and continuing until it was gradually replaced by the
abacus between 1368 and 1644 AD [21]. Common calculations included addi-
tion, subtraction, multiplication, and division. Standard algorithms for these
calculations leveraged the structure of the base-10 system, much like com-
mon algorithms of today, although the procedures looked rather different than
today’s standard column arithmetic.

In addition to the use of counting boards and a base-10 number system,
the Chinese also made use of positive and negative integers, as well as frac-
tions. They did not use literal symbols to represent unknown or unspecified
quantities, nor did they use a system of axiomatic deductive logic.

5.2. Linear Systems in the Nine Chapters

In analyzing the ancient Chinese methods for solving linear equations, Shen,
Crossley, and Lun [21] noted that the Chinese had as many as seven different
solution methods. There is some amount of overlap among these methods, and
several of them only work in systems with one or two equations. In what fol-
lows I focus on only one of these methods: the more general method for solving
systems of linear equations discussed in the problems in Chapter 8, whose title
can be translated as “Rectangular Arrays.”

Chapter 8 contains 18 problems, all of which correspond to linear systems
with between two and six unknown quantities. With one exception, all of the
problems have a unique solution with the number of constraints (equations)
equaling the number of unknown quantities. The only exception to this was a
problem whose solution set had one degree of freedom, which the author dealt
with by adding a reasonable assumption to the context in the description of the
solution.

5.3. Solving Linear Systems with Rectangular Arrays: An Example

A look at the translation of the Nine Chapters produced by Shen et al.
[21] offers some insight into the types of contexts that gave rise to systems
of linear equations in ancient China. Thirteen of the eighteen problems in
Chapter 8 draw on agricultural contexts, dealing with quantities of livestock
or grain (by number, weight, volume, or cost). The others contexts range from
practical (pulling forces of horses, amounts of water used by families sharing a
communal well, and amounts of chicken eaten by people based on their social
class) to more riddle-like (combinations of different types of coins, weights
of sparrows and swallows). These are evidence of the existence of a common
currency for trade, the domestication of horses for use as beasts of burden,
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and the class structure of Chinese society around 200 BC. The first problem in
Chapter 8 reads:

Now given 3 bundles of top grade paddy, 2 bundles of medium grade paddy,
[and] 1 bundle of low grade paddy. Yield: 39 dou of grain. 2 bundles of top grade
paddy, 3 bundles of medium grade paddy, [and] 1 bundle of low grade paddy,
yield 34 dou. 1 bundle of top grade paddy, 2 bundles of medium grade paddy,
[and] 3 bundles of low grade paddy, yield 26 dou. Tell: how much paddy does
one bundle of each grade yield. [21, p. 399]

In order to fully understand the context of this problem, it is important that the
reader understand that paddy is grain and that dou is a unit used for measuring
volume. If we were to rephrase the first sentence in a more contemporary way,
it might read “A combination of 3 bundles of high-quality grain, 2 bundles of
medium-quality grain, and 1 bundle of low-quality grain will yield 39 barrels
of flour.”

The reader is instructed to begin laying down counting rods vertically
in the far right column, in correspondence with the numeric values shown
below in Figure 6(a) and manipulated as in Figure 6(b). The steps to follow
are remarkably similar to what you might find in an undergraduate textbook
describing the steps of Gaussian elimination, albeit with the conventional use
of rows and columns switched.

Once the counting board is as shown in Figure 6(c), the Array (Fangcheng)
Rule states, “. . . the low grade paddy in the left column is the divisor, the
entry below is the dividend. The quotient is the yield of low grade paddy”
[21, p. 399]. This gives that the yield (per bundle) of the low-grade paddy
is 99/36 or 2 3/4 dou. The rule proceeds to describe how to use the yield
per bundle of low-grade paddy with the middle column to obtain the yield
per bundle of medium- and high-grade paddy, respectively. Thus, we see that
the Chinese process was markedly similar to Gaussian elimination as it is now
commonly taught, in that all entries above the diagonal of the coefficient matrix
are eliminated, and then back substitution is performed to compute the values
of the unknowns.

1 2 3
2 3 2
3 1 1

26 34 39

1 3
2 5 2
3 1 1

26 24 39

3
5 2

36 1 1
99 24 39

a. Initial arrangement of rods

b. “Multiply the middle column
throughout by the superior grain
on the right and continuously
subtract it.” (van der Waerden,
1983, pp. 47–48)

c. Final arrangement of rods

Figure 6. Chinese method of solving using counting boards, depicted with Hindu-
Arabic numerals.
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5.4. Discussion

In the Chinese method, the quantities do not function as coefficients in a sys-
tem of equations as we would conceive of them today. For instance, we would
likely express the far right column as the equation 3x + 2y + z = 39, where
x is the yield of one bundle of top-grade paddy, y is the yield of one bun-
dle of medium-grade paddy, and z is the yield of one bundle of low-grade
paddy. I argue that coefficients of three, two, and one can be conceptualized
in two ways. Based on the problem statement, they are obviously the given
numbers of bundles of each quality of grain. However, these coefficients can
also be viewed as the weights on the unknown yield rates x, y, and z. This latter
conceptualization highlights the multiplicative relation between the number of
bundles and the yield per bundle, as well as the additive relationship between
the yields from each type of grain in each given combination. I contend it
is likely more conceptually difficult for students (though not unimportant) to
represent this situation with a system of equations than it would be for them
to represent it with a counting board, as the counting board may mask the
need to explicitly contend with and coordinate these additive and multiplicative
relationships.

In using rectangular arrays to solve linear systems of equations, the central
demand on the mathematical thinker is that he or she determines a solution to
the system of equations. Mathematical activity is thus focused on the process
of finding a solution. I argue that, in Sfard’s [20] framing, this is an example of
a context that promotes a process view of a solution to a system of linear equa-
tions. Furthermore, it seems that the way in which systems were represented
afforded this intuitive, elimination-based problem-solving approach while also
constraining the opportunity to view these linear systems or their solutions as
mathematical objects in their own right.

6. PEDAGOGICAL RECOMMENDATIONS

History has the potential to inform instruction in a variety of ways. In particular,
it can offer insights into difficulties students are likely to encounter, and it can
serve as a source of inspiration for the development of tasks that create a need
for the types of mathematical ideas we want students to learn. With these ideas
in mind, in this section I discuss implications for instruction that emerged from
my analysis. I begin with some comments relating to the issue of determinants
discussed early in this paper. The remainder of my discussion is organized
around the contexts that gave rise to a need for ideas relating to linear systems
of equations, the ways in which available tools and representations shaped the
development of those ideas, and the identification of central, underlying ideas
and questions that drove the development of a coherent theory of systems of
linear equations.
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6.1. Instructional Implication: Reinventing Determinants

Historically, determinants were developed to help express solutions to systems
of linear equations in terms of their coefficients [6]. Although it is not the case
that the idea of determinants emerged from an explicit goal of computing a
single value that would reveal whether a system had a unique solution, such a
framing is potentially useful from a pedagogical point of view. Such a framing
not only pushes toward an object view of systems of equations, it also pushes
students to think about relationships between the coefficients in a system of
equations and the nature of the system’s solution set. Instructionally, one might
present an opportunity for students to reinvent the notion of a determinant using
the framing suggested in Figure 7. A similar approach to reinventing determi-
nants has been used in the context of an inquiry-oriented differential equations
course [19].

One way to see if the system in Figure 7 has a unique solution is to deter-
mine if the lines are not parallel, which is easily done by putting both equations
in slope-intercept form (i.e., the form y = mx + b commonly used in high
school algebra). This is easily related to the requirement that ad �= bc, or equiv-
alently, that ad-bc �= 0. In this way, determinants can be conceived of as a tool
for determining if a system of equations has a unique solution.

It is worth noting that in three or more dimensions, the mathematics
becomes more complicated because one must deal with linear combinations
and not just scalar multiples (much like when dealing with span and linear
independence). Katz [13] suggests Maclaurin’s 1729 approach if students are
to derive determinants for a 3 × 3 system: “given three equations in three
unknowns x, y, z, he solved the first and second equations for y (treating x
as a constant), then the first and third equations, then equated the two values
and found z” (p. 193).

6.2. On Context

In ancient China, the contexts that gave rise to a need for linear systems
came largely from agriculture and trade. Although the solutions to these sys-
tems were often fractional values, the problems tended to be constructed with
integer-valued constraints. Gauss, on the other hand, worked in contexts that

Figure 7. Possible task for student reinvention of determinants.
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required non-integer-valued coefficients, and he explicitly discussed the num-
bers of possible solutions to linear systems and the conditions under which
each would occur. He also discussed in detail the need for increased accuracy
provided by using multiple measurements that acknowledge error, and the way
in which this created a system with conflicting constraints for which a “best”
solution was needed.

Gauss’s work points to the importance of seriously considering meaning-
ful contexts in which the number of constraints (equations) exceeds the number
of unknowns – and the importance of not simply dismissing such systems as
having no solution. In the case where a system of equations with no solu-
tion arises from a meaningful context, there is likely a need to find the best
approximation to a solution.

In addition to my recommendation, per the work of Gauss, that incon-
sistent systems receive their due attention in realistic contexts, I suggest that
instructors not take it as immediate or obvious that the number of (indepen-
dent) constraints needs to equal the number of variables in order to have a
unique solution. It is not necessarily obvious to students why the number of
(independent) equations must match the number of unknowns in order for a lin-
ear system to have a unique solution. For these reasons, I posit that instructors
might precede the question “How do we solve linear systems of equations?”
with “What does it mean to be a solution to a system of equations?” Subsequent
classroom discussions about the following issues could offer insight into how
students think about processes for solving system of equations.

1. How does the relationship between the number of unknowns and the num-
ber of constraints (equations) affect the solution to a system of linear
equations?

2. How can we detect and account for conflicting constraints and/or hid-
den redundancies when counting the constraints described in the previous
question?

3. How do we know, when we manipulate systems of equations or perform
row/column operations, what information is changed, and what is left the
same? (For instance, if we say two augmented matrices are row equiva-
lent, what is equivalent about them, and how do we know that aspect of the
system was unchanged by the row operations we performed?)

These questions point to a core set of ideas about systems of linear equations
and their solution sets that are non-trivial for students, and are much richer
in terms of theory than what a procedurally focused treatment of Gaussian
elimination might entail. There is a rich history with a variety of contexts that
have contributed to the development of the current theory of the nature of linear
systems of equations and their solutions – and this set of ideas is a foundational
part of a complete understanding of linear algebra.
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6.3. On Tools and Representations

Mathematical tools impact the way in which ideas are notated, represented, and
conceptualized. For instance, the use of counting boards in China facilitated a
shift to the base-10 numeration system from an earlier system in which the
location of digits did not indicate their magnitude, and counting boards clearly
affected the way in which systems of equations were represented and manipu-
lated so as to find solutions. Gauss’s use of literal symbols, which distinguished
unknown quantities from unspecified but known quantities, lent itself to the
use of repeated substitutions – a crucial element Gauss’s 1811 description of
his method for solving linear systems. Differential calculus also served as an
important mathematical tool in Gauss’s development of his method of least
squares, where his need for Gaussian elimination arose. Another example that
supports this claim about the importance of mathematical tools is seen in Seki’s
‘‘matrix-like’’ arrangement of terms to develop determinants as compared with
Cramer’s clever use of indexing for his more combinatorial description of
determinants.

Pedagogically, this points to the importance of the selection and framing of
mathematical tasks and questions, as well as the notation, representations, and
tools used in the posing of those tasks. For instance, consider the Chinese use
of rectangular arrays on counting boards to solve what would now be described
as linear systems of equations. The representation is tightly tied to the quan-
tities given in the real-world context, and the manipulations of the columns
are easily and intuitively justified in a way that ties directly to the problem
context. Coherence between problem context and representational tools can
support students’ problem-solving efforts. On the other hand, representations
that are too tightly connected to specific contexts and needed manipulations
may lend themselves more readily to process views as argued previously in this
paper. Process views are developmentally important, but when there is a need
to shift to an object view, a shift in notation may help facilitate this change in
perspective.

7. FINAL REMARKS

So what is one to do with all this history? How might it inform the teaching of
linear algebra? Some would argue that asking students to work directly with the
contexts from history is a productive route; I would argue that this depends on
whether this approach aligns with the learning goals of a particular course. The
instructional design theory of Realistic Mathematics Education suggests that
an effective model of supporting students’ learning is by providing them with
opportunities to work first in real-world contexts, and to then gradually shift
away from those specific contexts, pushing students to conjecture what can be
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generalized and supporting them in shifting toward notation that captures those
generalizations [11].

One might then, for instance, draw on the problems such as those given in
the Nine Chapters as contexts for the teaching of row reduction (likely under
the more modern convention in which rows correspond to equations). However,
these problems tend to focus on systems with unique solutions. Although there
are some mechanics to learn in row reduction, the insight gleaned from the
systematic use of elimination and how that can extend to situations in which a
linear system does not have a unique solution is an important conceptual learn-
ing goal, and one that seems to be significantly more troublesome for students
than solving a system with a unique solution.

There might also be value in drawing on Gauss’s context to teach about
either the development of Gaussian elimination or ways of approximating solu-
tions to inconsistent systems. However, Gauss’s approach to the former is
heavily embedded in a broader set of questions that are beyond the scope of a
typical introductory linear algebra course. The latter, the idea of learning about
ways of approximating solutions to inconsistent systems, is a topic with many
relevant contemporary applications, but is often left as a special topic to be cov-
ered as time allows. This is likely due to the fact that, although highly relevant
to a number of applied contexts, such approximation methods are not crucial
for developing subsequent ideas in an introductory linear algebra course.

Drawing on my experiences and those of my colleagues interested in issues
surrounding the teaching and learning of linear algebra, a pervasive source
of student difficulty is describing and making sense of the solution sets to
systems of linear equations which have infinitely many solutions. These dif-
ficulties are likely to impede students’ learning of other important ideas in
linear algebra (e.g., describing non-trivial null spaces, finding and interpret-
ing eigenvectors). Anecdotally, students are often able to describe a solution
as something that, when “plugged in” for the variables, creates a true state-
ment or set of statements; however, when the solution is not a single value
for each variable, interpretation becomes problematic. Student questions that
have arisen in class discussions around solutions to systems of equations with
infinitely many solutions (after solving systems using substitution and elimina-
tion methods, but prior to instruction on row reduction) include: “How do you
know if three planes intersect in a plane or a line?’’and ‘‘ How do you know
how many parameters there are (for describing the solution set)?’’ and “How
do you know which variables can be parameters (for describing the solution
set)?” The latter two questions highlight the value of a systematic approach to
solving systems of linear equations that standardizes the choice of parameters
(e.g., through row reduction).

Viewed through the lenses of history and mathematics education research,
student difficulties with making sense of solution sets that are described using
parameters are perhaps unsurprising. Historically, mathematical understand-
ing of linear systems with unique solutions predated our understanding of
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those with infinitely many solutions. Indeed, notational tools were needed to
accurately and concisely characterize solutions in the latter case. However, the
literature on student thinking would suggest that it is precisely these notational
tools that are one significant source of student struggle. It is well-documented
that the varied use and interpretation of literal symbols (e.g., as unknowns, as
variables, as parameters) is a source of difficulty for students at the secondary
and tertiary levels [17, 23]. The fact that literal symbols are needed to describe
solution sets in the case of systems with infinitely many solutions suggests that
making sense of such solution sets would be a source of challenge for students.
An example, such as that given by Euler for illustrating inclusive dependence,
could prove pedagogically useful for helping students make sense of linear sys-
tems with infinitely many solutions as well as the conventions for describing
their solution sets (both geometrically and algebraically).

Mathematical ideas do not develop until there is an intellectual need for
them, as well as a sufficient set of notational tools to reason effectively in the
context of that need. A need for a solution to a system of linear equations is
rather natural, but the idea that some systems do not have unique solutions is
perhaps less natural. As such, I argue that in addition to working in contexts
with unique solutions, students need opportunities to work with contexts where
an approximate solution to an inconsistent solution is needed, as well as con-
texts where they must make sense of parameters. Inconsistent systems could
be taken from examples, such as that of Gauss, or from any other number of
applied examples that are commonly used for systems of equations problems in
high school and college textbooks (e.g., problems where one must relate quanti-
ties of particular kinds of food to number of calories from carbohydrates, fats,
and proteins). Possani et al. [18] detail how a mathematical modeling prob-
lem set in a traffic flow context can be used support students’ learning about
parameterizations of linear systems with infinitely many solutions.

Looking across the historical development of linear systems, one sees
that the comprehension and articulation of what it means to be a solution to
a linear system of equations became more refined and well articulated over
time. Solution sets to linear systems were historically conceptualized first in
terms of solving processes and subsequently as mathematical objects; students’
understanding of solutions is likely to progress similarly. In order to develop
a conceptual understanding of many of the key ideas in an introductory linear
algebra course, students’ similarly need to come to understand solutions to sys-
tems of linear equations as mathematical objects, particularly in the case when
the solution is not unique. Over 1500 years passed between the articulation of
the Chinese solution process using counting boards and the general descrip-
tions of solution sets that were developed through the theory of determinants
(and Euler’s observation about inclusive dependence), so this shift from a pro-
cess view of solutions to an object view of solutions is likely to be similarly
non-trivial for students.
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More research is needed to better understand the nature of difficulties stu-
dents experience in coming to understand the solution sets to systems of linear
equations, and the rationale for processes that give rise to these solution sets.
However, history affords many rich insights into sources of challenge, as well
as ways in which one might recreate the intellectual need for a mathematical
idea in his or her classroom and pair that need with tools that position students
for learning based in meaningful, historically informed mathematical activity.
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